


By Jonathan Corbet 
January 9, 2018

THE MARKET DEMANDS OPEN
COMPUTER PROCESSORS

 

The disclosure of the Meltdown and Spectre
vulnerabilities has brought a new level of
attention to the security bugs that can lurk at

the hardware level. Massive amounts of work have gone into improving
the (still poor) security of our software, but all of that is in vain if the
hardware gives away the game. The CPUs that we run in our systems are
highly proprietary and have been shown to contain unpleasant surprises
(the Intel management engine, for example). It is thus natural to wonder
whether it is time to make a move to open-source hardware, much like we
have done with our software. Such a move may well be possible, and it
would certainly offer some benefits, but it would be no panacea.

Given the complexity of modern CPUs and the fierceness of the market in
which they are sold, it might be surprising to think that they could be
developed in an open manner. But there are serious initiatives working in
this area; the idea of an open CPU design is not pure fantasy. A quick look
around turns up several efforts; the following list is necessarily
incomplete.

What's out there

Consider, for example, the OpenPOWER effort, which is based on the
POWER architecture. It is not a truly open-source effort, in that one has to
join the club to play, but it is an example of making a processor design
available for collaborative development. Products based on the (relatively)
open designs are shipping. OpenPOWER is focused on the high end of the
computing spectrum; chips based on this design are unlikely to appear in
your handset or laptop in the near future.

https://lwn.net/Articles/742702/
https://lwn.net/Articles/715817/
https://openpowerfoundation.org/


Then, there is OpenSPARC, wherein Sun Microsystems fully opened the
designs of the SPARC T1 and T2 processors. A few projects tried to run
with these designs, but it's not clear that anybody got all that far. At this
point, the open SPARC designs are a decade old and the future of SPARC
in general is in doubt. Interesting things could maybe happen if Oracle
were to release the designs of current processors, but holding one's breath
for that event is probably not the best of ideas.

OpenRISC is a fully open design for a processor aimed at embedded
applications; it has one processor (the OpenRISC 1000) in a complete
state. Some commercial versions of the OpenRISC 1000 have been
produced, and reference implementations (such as the mor1kx) exist. The
Linux kernel gained support for OpenRISC in the 3.1 release in 2011, and
a Debian port showed up in 2014. The Debian work shut down in 2016,
though. Activity around the kernel's OpenRISC code has slowed, though it
did get SMP support in 2017. All told, OpenRISC appears to have lost
much of the momentum it once had.

Much of the momentum these days, instead, appears to be associated with
the RISC-V architecture. This project is primarily focused on the
instruction-set architecture (ISA), rather than on specific implementations,
but free hardware designs do exist. Western Digital
recently announced that it will be using RISC-V processors in its storage
products, a decision that could lead to the shipment of RISC-V by the
billion. There is a development kit available for those who would like to
play with this processor and a number of designs for cores are available.

Unlike OpenRISC, RISC-V is intended to be applicable to a wide range of
use cases. The simple RISC architecture should be relatively easy to make
fast, it is hoped. Meanwhile, for low-end applications, there is a
compressed instruction-stream format intended to reduce both memory
and energy needs. The ISA is designed with the ability for specific
implementations to add extensions, making experimentation easier and
facilitating the addition of hardware acceleration techniques.

The Linux support for RISC-V is quite new; indeed, it will only appear
once the 4.15 release gets out the door. The development effort behind it
appears to be quite active, and toolchain and library support are also

http://www.oracle.com/technetwork/systems/opensparc/opensparc-overview-1562924.html
https://openrisc.io/
https://www.librecores.org/openrisc/mor1kx
https://wiki.debian.org/OpenRISC
https://git.kernel.org/linus/8e6d08e0a15e7d4d4b608b56597350d4cdd77710
https://riscv.org/
https://www.designnews.com/electronics-test/western-digital-transitions-risc-v-open-source-architecture-big-data-iot/96736693957917
https://www.sifive.com/products/hifive1/
https://riscv.org/risc-v-cores/


landing in the appropriate projects. RISC-V seems to have quite a bit of
commercial support behind it — the RISC-V Foundation has a long list of
members. It seems likely that this architecture will continue to progress
for some time.

A solution to the hardware problem?

In response to Meltdown and Spectre, the RISC-V Foundation put out a
press release promoting the architecture as a more secure alternative.
RISC-V is indeed not vulnerable to those problems by virtue of not
performing any speculative memory accesses. But the Foundation says
that RISC-V has advantages that go beyond a specific vulnerability; the
openness of its development model, the Foundation says, enables the
quick incorporation of the best security ideas from a wide range of
developers.

It has become increasingly clear that, while Linux may have won the
battle at the kernel level, there is a whole level of proprietary hardware
and software that runs below the kernel that we have no control over. An
open architecture like RISC-V is thus quite appealing; perhaps we can
eventually claw some of that control back. This seems like a dream worth
pursuing, but getting there involves some challenges that must be
overcome first.

The first of these, of course, is that while compilers can be had for free,
the same is not true of chip fabrication facilities, especially the expensive
fabs needed to create high-end processors. If progress slows at the silicon
level — as some say is already happening — and fabrication services
become more available to small customers, then it may become practical
for more of us to experiment with processor designs. It will never be as
easy or as cheap as typing "make", though.

Until then, we're going to remain dependent on others to build our
processors for us. That isn't necessarily bad; almost all of us depend on
others to build most of our software for us as well. But a higher level of
trust has to be placed in hardware. Getting reproducible builds working at
the software level is a serious and ongoing challenge; it will be even

https://riscv.org/members-at-a-glance/
https://riscv.org/2018/01/more-secure-world-risc-v-isa/


harder at the hardware level. But without some way of verifying
underlying design of an actual piece of hardware, we'll never really know
if a given chip implements the design that we're told it does.

Nothing about the RISC-V specification mandates that implementation
designs must be made public. Even if RISC-V becomes successful in the
marketplace, chances are good that the processors we can actually buy
will not come with freely licensed designs. Large customers (those that
build their own custom data centers) may well be able to insist on getting
the designs too — or just create their own — but the rest of us will find
ourselves in a rather weaker bargaining position.

Finally, even if we end up with entirely open processors, that will not
bring an end to vulnerabilities at that level. We have a free kernel, but the
kernel vulnerabilities come just the same. Open hardware may give us
more confidence in the long term that we can retain control of our
systems, but it is certainly not a magic wand that will wave our problems
away.

None of this should prevent us from trying to bring more openness and
freedom to the design of our hardware, though. Once upon a time, creating
a free operating system seemed like an insurmountably difficult task, but
we have done it, multiple times over. Moving away from proprietary
hardware designs may be one of our best chances for keeping our
freedom; it would be foolish not to try.

(Log in to post comments)

Is it time for open processors?
Posted Jan 9, 2018 14:55 UTC (Tue) by armijn (subscriber, #3653)
[Link]

There is a (somewhat) successful open SPARC implementation (though I
am not sure if it is actually based on OpenSPARC) and that is the LEON,
which is used by ESA. That is, of course, a bit of a niche market.

Is it time for open processors?

https://lwn.net/login?target=/Articles/743602/
https://lwn.net/Articles/743663/


Posted Jan 10, 2018 0:21 UTC (Wed) by JanC_ (subscriber, #34940)
[Link]

LEON is not based on on the UltraSPARC T1/T2 designs that were
releases as "OpenSPARC". It's a much simpler 32-bit CPU design
(SPARC v8). 

They were manufactured by Atmel, and are currently being sold by
Microchip, e.g.: 
http://www.microchip.com/wwwproducts/en/AT697F 
http://www.microchip.com/wwwproducts/en/ATF697FF 
http://www.microchip.com/wwwproducts/en/AT7913E

Is it time for open processors?
Posted Jan 9, 2018 15:07 UTC (Tue) by jcm (subscriber, #18262) [Link]

The problem with an "open" processor is the cost. It costs over $1.2
Billion to do a ground up 4 year OoO core of the kind of competitive
performance that others have built. And even then, once silicon is
deployed, security issues can still be found. In short, it will *never*
happen. You'll get RISC-V cores like BOOM, you'll see some wonderful
IoT designs, but you'll *never* see a high end Xeon-class core unless
some billionaire funds it as a pet project, and keeps investing year after
year for the greater good. And no, none of the major search/cloud vendors
are going to go fund this - they want to make commercial vendors
compete. 

More useful would be focusing on how to make existing designs robust,
especially against mitigations. I'm a huge fan of microcode, but its
implementation today is very limited. There's a lot more research that can
happen into how to address security in the field.

Is it time for open processors?
Posted Jan 9, 2018 15:15 UTC (Tue) by ejr (subscriber, #51652) [Link]

Don't bet against it quite yet. Plus, existing RISC-V research work done
by grad students has produced accelerators for various problems that
are competitive in speed and/or power/operation.

https://lwn.net/Articles/743768/
http://www.microchip.com/wwwproducts/en/AT697F
http://www.microchip.com/wwwproducts/en/ATF697FF
http://www.microchip.com/wwwproducts/en/AT7913E
https://lwn.net/Articles/743667/
https://lwn.net/Articles/743668/


Is it time for open processors?
Posted Jan 9, 2018 15:49 UTC (Tue) by epa (subscriber, #39769)
[Link]

Does your figure of $1.2 billion include manufacturing or is it just for
the design stage?

Is it time for open processors?
Posted Jan 9, 2018 15:56 UTC (Tue) by pizza (subscriber, #46)
[Link]

I think 1.2 billion is a bit high for just R&D, but I can easily see
"hundreds of millions" as the price tag to design (and more
importantly, adequately verify!) a modern CPU core. And that's
assuming it's re-using an existing instruction set and hardware
platform so you don't have to bootstrap the rest of the ecosystem
around it.

Is it time for open processors?
Posted Jan 9, 2018 23:16 UTC (Tue) by smoogen (subscriber,
#97) [Link]

I think the 1.2 billion is the case for getting a system into complete
production while facing the 'realities' of the industry. The design
and 'code' of the chipset to run it in an emulator may only be in the
10->100 million range.. the getting that to be something on silicon
starts adding up quickly. You start running into physical problems
(well yes we could do that set of adds there but the chip burns up
and if we space them out we slow down this other operation).
Then you have to avoid physical patents (aka use only methods
from 20 years ago in a lot of cases) or spend a lot on them or
hopefully have a ton of patents of your own that you can force
cross-license costs which will make you pay less overall. 

Is it time for open processors?
Posted Jan 9, 2018 17:25 UTC (Tue) by excors (subscriber, #95769)
[Link]

https://lwn.net/Articles/743671/
https://lwn.net/Articles/743672/
https://lwn.net/Articles/743757/
https://lwn.net/Articles/743710/


I think manufacturing a single chip takes something on the order of a
million dollars and a couple of months from when you send the
completed design to the foundry. (Subsequent chips are much
cheaper and quicker). If you've been employing hundreds of
engineers to design it, and buying FPGAs and simulators to test it,
the manufacturing sounds like a fairly trivial cost (though the latency
can be annoying, particularly if you find a bug and need to start
again).

Is it time for open processors?
Posted Jan 9, 2018 18:35 UTC (Tue) by daney (subscriber,
#24551) [Link]

Think 40 mask layers * (between $80,000 and $100000 per mask)
for modern processes and it adds up to more than "a million". The
latency from design in to packaged chip out is indeed on the order
of two months. 

"Metal" fixes where you just rewire the top few layers of wires to
fix minor bugs are much cheaper as you only have to regenerate a
few (say six) of the masks.

The cost of employing 50-100 people for a couple of years is
where the main costs to chip development lie. It is usually more
than just a "CPU" design, as you need things like DRAM
controllers, coherent cache fabrics, PCIe ports, packaging, thermal
engineering, etc. for a usable design.

Is it time for open processors?
Posted Jan 16, 2018 9:26 UTC (Tue) by marcH (subscriber,
#57642) [Link]

> It is usually more than just a "CPU" design, as you need
things like DRAM controllers, coherent cache fabrics, PCIe
ports, packaging, thermal engineering, etc. for a usable design. 

For low-power, single core, embedded and highly integrated
SoCs the real estate used by the CPU core can actually be small

https://lwn.net/Articles/743715/
https://lwn.net/Articles/744465/


compared to all the rest. Now the relationship between number
of gates and design complexity is of course not direct, however
it's not completely unrelated either.

So yes: open-source SoCs would make a difference, open-
sourcing CPU cores alone not so much. As long as this
confusion is maintained there's nothing wrong to correct :-)

Is it time for open processors?
Posted Jan 9, 2018 18:37 UTC (Tue) by mtaht (✭ supporter ✭,
#11087) [Link]

This was one of the most open source design and development
efforts done to date: http://www.adapteva.com/andreas-
blog/adapteva-status/ 

But although it was done more cheaply than anyone could have
believed, by a small team and led by someone utterly brilliant, (he
wrote a good paper describing deeply how the costs broke down

http://www.adapteva.com/wp-content/uploads/2013/06/hpec12...

) several important features proved too buggy to work in practice
on the first chip revisions, and it looks unlikely those bugs will
ever be resolved, nor will they do the 1000 core version.

Is it time for open processors?
Posted Jan 9, 2018 18:46 UTC (Tue) by mtaht (✭ supporter
✭, #11087) [Link]

oops, wrong second link. I cannot find the paper, did find some
relevant slides. 

https://www.parallella.org/wp-content/uploads/2017/01/hip...

Is it time for open processors?
Posted Jan 9, 2018 17:05 UTC (Tue) by excors (subscriber, #95769)
[Link]

https://lwn.net/Articles/743716/
http://www.adapteva.com/andreas-blog/adapteva-status/
http://www.adapteva.com/wp-content/uploads/2013/06/hpec12_olofsson_publish.pdf
https://lwn.net/Articles/743722/
https://www.parallella.org/wp-content/uploads/2017/01/hipeac_lessons.pdf
https://lwn.net/Articles/743706/


As software people, maybe we need to stop relying on ever-more-
complex OoO hardware to make our code faster over time, and design
software that can run optimally on simpler in-order CPUs instead. Then
open-hardware people could make reasonably competitive CPU designs
without the absurd complexity that leads to these surprising
vulnerabilities and that requires the billion-dollar R&D costs. 

In particular, you can probably fit two reasonable in-order cores in the
same silicon area and power budget as one big out-of-order core, and
get better performance from software that uses all the cores. But writing
multithreaded software is really hard; occasionally that's inherent in the
problem we're trying to solve, but I think in many cases it's just because
our languages and tools and design patterns make it excessively
difficult and error-prone. I imagine there are lots of expensive serial
algorithms in the Linux kernel that could benefit from concurrency, but
concurrency in C usually involves far more pain than it's worth, so that
rarely happens. I don't know what languages etc would be better - I
don't know if they even exist yet - but surely *something* must be
possible?

GPUs show that approach works in some cases. Each 'core' can be a
relatively simple in-order thing, with dozen-cycle instruction latency,
no branch prediction, no per-core data cache, and can happily stall a
thread for hundreds of cycles while waiting for memory. In exchange
for those limitations the programmer is given thousands of cores, a
programming model that makes it easy to use all those cores, and much
better power efficiency and peak performance than a CPU.

I don't think you'd want to run an OS kernel on a GPU - they're a bit too
extreme in prioritising throughput over latency. But maybe something
halfway between GPUs and OoO CPUs (in terms of core complexity,
latency, core count, etc), with a suitable programming model to make
best use of it, could work much better than what we've got today.

Is it time for open processors?
Posted Jan 9, 2018 20:04 UTC (Tue) by andresfreund (subscriber,
#69562) [Link]

https://lwn.net/Articles/743731/


I think too many use cases care about latency to a large enough that
going to simple in-order cores is going to work. It's not particularly
realistic to effectively parallelize tasks that only take a few ms to a
large number of cores. There's certainly a lot of improvements
needed to take advantage of more cores, but I think the number of
cases where single-core performance is crucial will be large enough
that we won't see a large move to simple in-order cores. 

It's possible that we'll go more in the direction of a handful of
complex OOO cores, and a lot more simple cores for the rest of the
work, but that won't help against spectre like vulns.

Is it time for open processors?
Posted Jan 9, 2018 21:03 UTC (Tue) by roc (subscriber, #30627)
[Link]

The problem is Amdahl's law. There's always some part of your
workload that can't be parallelized, and given enough CPUs, that part
of your workload will come to dominate performance. Thus
maximizing single-threaded performance, including using
speculative execution, is always important.

Is it time for open processors?
Posted Jan 9, 2018 23:15 UTC (Tue) by daniels (subscriber,
#16193) [Link]

> The problem is Amdahl's law. There's always some part of your
workload that can't be parallelized, and given enough CPUs, that
part of your workload will come to dominate performance. Thus
maximizing single-threaded performance, including using
speculative execution, is always important.

Hopefully autotools won't be with us for much longer.

Is it time for open processors?
Posted Jan 16, 2018 19:15 UTC (Tue) by hkario (subscriber,
#94864) [Link]

https://lwn.net/Articles/743746/
https://lwn.net/Articles/743762/
https://lwn.net/Articles/744518/


unfortunately the current applications running in the BrowserOS
only recently aren't forced on a single CPU and each get a
thread by themselves 

not that it helped much for performance

Is it time for open processors?
Posted Jan 9, 2018 21:13 UTC (Tue) by tshow (subscriber, #6411)
[Link]

> I imagine there are lots of expensive serial algorithms in the Linux
kernel that could benefit from concurrency, but concurrency in C
usually involves far more pain than it's worth, so that rarely happens.
I don't know what languages etc would be better - I don't know if
they even exist yet - but surely *something* must be possible? 

That's been the mantra for the last 30 years at least, but rather like
practical fusion, it always seems to be a decade away.

Aside from anything else, if parallelism was being held back by C-
family languages, you'd think someone would have written a library
with a simple API to wrap the problem up and isolate it from the
calling language.

One of the advantages of pure functional languages is that they make
parallelism easier (the lack of side effects makes isolating functions
simpler), but in practical terms the difference hasn't been enough that
the world has flipped to LISP or ML-family languages.

Besides, a lot of programming problems are stubbornly serial.

I think if anything the best hope is probably a combination of
simplified faster cores and a re-examination of the primitives modern
programming languages need to do their jobs. Who knows what
performance we could wring from hardware that was built with
modern compilers in mind?

Is it time for open processors?

https://lwn.net/Articles/743744/


Posted Jan 10, 2018 8:23 UTC (Wed) by smurf (subscriber,
#17840) [Link]

> I think if anything the best hope is probably a combination of
simplified faster cores  
> and a re-examination of the primitives modern programming
languages need to do their jobs. 

Modern processor cores already are as fast as it gets … and what
could be more simple, conceptually, than "load a value, do
something else while that load stalls, then do something with the
value"?

The reason some current processors only have two hyperthreads is
probably because more don't increase speed, due to switching
costs, large caches, and instruction-level parallel execution. All of
this also speeds up single-threaded programs, which is why a
simpler, possibly-more-hyperthreaded processor is unlikely to win
any real-world performance awards.

Is it time for open processors?
Posted Jan 10, 2018 9:45 UTC (Wed) by renox (subscriber,
#23785) [Link]

> Modern processor cores already are as fast as it gets … and
what could be more simple, conceptually, than "load a value, do
something else while that load stalls, then do something with the
value"?

Not having this? Have a look at the Mill CPU
( https://en.wikipedia.org/wiki/Mill_architecture ), it tries to get
the same performance than modern CPU on regular code
without having the complexity of OoO CPU.

It's only slideware currently though unfortunately and its single
address space design would need big changes in current
softwares so I'm not very optimistic..

https://lwn.net/Articles/743804/
https://lwn.net/Articles/743810/
https://en.wikipedia.org/wiki/Mill_architecture


Is it time for open processors?
Posted Jan 10, 2018 13:53 UTC (Wed) by smurf (subscriber,
#17840) [Link]

> It's only slideware currently though unfortunately and its
single address space design 
> would need big changes in current softwares so I'm not very
optimistic.. 

That's one problem.

The other: Compare to what Transmeta tried to do and what
they ended up actually accomplishing before folding. The
Mill idea is an order of magnitude more ambitious, which
IMHO translates to an equally extensive uncertainty WRT the
achievable results.

Is it time for open processors?
Posted Jan 20, 2018 6:49 UTC (Sat) by igodard (guest,
#105242) [Link]

Mill team here. A bug-compatible x86 (Transmeta) was
vastly more ambitious than anything we ever considered.
Yes, the Mill is different, but the bulk of the difference is
simplification. "Please excuse this long letter, but I did not
have the time to write a short one" - Blaise Pascal

Is it time for open processors?
Posted Jan 10, 2018 14:55 UTC (Wed) by jcm (subscriber,
#18262) [Link]

Good luck to them. They have absolutely no chance
whatsoever.

Is it time for open processors?
Posted Jan 10, 2018 15:14 UTC (Wed) by mtaht (✭
supporter ✭, #11087) [Link]

https://lwn.net/Articles/743826/
https://lwn.net/Articles/744827/
https://lwn.net/Articles/743849/
https://lwn.net/Articles/743852/


One really remarkable thing I've learned in life:
*Sometimes* Don Quixote does win.

Is it time for open processors?
Posted Jan 11, 2018 20:47 UTC (Thu) by joib (subscriber,
#8541) [Link]

To begin with, I think it's important that we as a society fund
wild out-there stuff, even if most of it "fails". Because the
alternative is incrementalism, which we have enough of
already, thank you very much. So in the grand scheme of
things, I think it's perfectly Ok if we spend some 10's of
millions of $$$ on Mill to see if the idea flies. 

That being said, the Mill "belt" seems like a somewhat clever
mix between "normal" register based cpu's and a stack
machine. OTOH I'm not convinced it avoids the problems in
making a superscalar pipelined stack machine, in that you get
a very strict ordering requirement due to the results being
pushed on top of the stack (or onto the end of the belt in
Mill). Further, their IPC claims seem, er, really far out there; I
don't understand how they can credibly claim such numbers.
Add in the fact that after all these years they still have nothing
more than powerpoints to show, so I'm a bit skeptical. 

But if it works out, hey, awesome!

Is it time for open processors?
Posted Jan 16, 2018 9:39 UTC (Tue) by marcH (subscriber,
#57642) [Link]

> Aside from anything else, if parallelism was being held back by
C-family languages, you'd think someone would have written a
library with a simple API to wrap the problem up and isolate it
from the calling language. 

The memory model has to be built in the language. C/C++ finally
got one after 40 years. 

https://lwn.net/Articles/744099/
https://lwn.net/Articles/744467/


http://www.hboehm.info/c++mm/

https://doc.rust-lang.org/book/first-edition/concurrency....

Is it time for open processors?
Posted Jan 9, 2018 21:14 UTC (Tue) by jcm (subscriber, #18262)
[Link]

Nice ideas, but the reality is that the industry has convinced itself that
only software matters. Nobody cares about hardware, and nobody
understands it at anything like the scale of the number of software
engineers who can write python to run on brawny cores. Certain
players in the industry have spent years literally sucking the
competency out of others in an effort to benefit from the extreme
logical extent of abstraction. This will never be fixed. The only path
is open and fair competition from alternatives provided by companies
who can make a decent living enough to invest in taking on
incumbents.

Is it time for open processors?
Posted Jan 9, 2018 22:58 UTC (Tue) by mtaht (✭ supporter ✭,
#11087) [Link]

With industry consolidation (Intel buying Altera, Broadcom
buying Qualcomm, Synoptics buying up a zillion toolmaker), I am
pessimistic about the future of complex hardware design.

Is it time for open processors?
Posted Jan 9, 2018 23:15 UTC (Tue) by jcm (subscriber,
#18262) [Link]

Me too. I have been for years.

Is it time for open processors?
Posted Jan 10, 2018 0:34 UTC (Wed) by tpo (subscriber, #25713)
[Link]

http://www.hboehm.info/c++mm/
https://doc.rust-lang.org/book/first-edition/concurrency.html
https://lwn.net/Articles/743747/
https://lwn.net/Articles/743756/
https://lwn.net/Articles/743761/
https://lwn.net/Articles/743771/


Does anybody in this thread have a figure on how much out of order
execution buys you? Is that in the order 50% or of a factor of 2 or
10* or ... ? 

50% or a factor two is not huge and I would guess that this could be
gained by less fat and wasteful software stacks. I think modern
programs do *huge* memory I/O due to fat stacks and OO, so I think
most programs are RAM I/O bound (i.e. word processing does
basically what it did 30 years ago, except for the much prettier
glyphs, but is using 10² - 10³ times more RAM for the "same task"). 

Wrt to parallelisation I think the only "workable" paradigm is
message passing (what I understand of Rust's parellelizing paradigm
I would consider as message passing).

But, as far as I understand, message passing is even more demanding
on I/O since the OS needs to be copying a lot of data, so that'd be
even worse. The only solution to that problem I can see is something
like HPs "The machine" concept where you have a lot of cores with a
lot of local RAM and extremely fast message passing between the
cores. Which as an abstraction maps somewhere between "each core
has it's own OS" and "each core is a process".

All this is my reasoning as a non-practitioning bystander looking at
the various working and imagined concepts.

Are there papers looking at these concepts quantitatively and
holisticaly? I.e. price per "processing unit", total computing
throughputs, I/O throughputs, estimates of the degrees of freedom in
applications (in how many parallel parts could typical workloads be
possibly split?)?

That is, do we know for sure that fat sequential CPUs will always
win with today's workloads and the paradigms that we are aware of?

Is it time for open processors?
Posted Jan 10, 2018 1:59 UTC (Wed) by Cyberax (✭ supporter
✭, #52523) [Link]

https://lwn.net/Articles/743785/


The OO gain is about 5x or more on many loads. 100x is not
unheard of for carefully tuned code.

Is it time for open processors?
Posted Jan 10, 2018 14:58 UTC (Wed) by jcm (subscriber,
#18262) [Link]

Yea, OoO benefit is *huge*. And there's nothing wrong with
OoO. The problem comes when you take the implementation a
little far and separate your permissions checking from your
other logic (and handle the exception at retirement) in the name
of speed. 

OoO has limits. Intel's general approach for a while has been to
shove progressively large reorder windows into their cores. You
get to do that for a few generations before it stops buying you
increased performance. I've been gleefully looking forward to
how they handle trying to exceed 224 entries in flight, because it
won't let them publish PowerPoint slides showing much benefit.
They'll probably still go and build it tho.

Is it time for open processors?
Posted Jan 10, 2018 15:45 UTC (Wed) by excors (subscriber,
#95769) [Link]

> there's nothing wrong with OoO 

Can you realistically have an OoO CPU without speculative
execution? (I'd assume not since OoO execution benefits
from having lots of instructions in flight, and most programs
don't exclusively use long sequences of instructions with no
branches, so you'd lose too much performance if you didn't
speculate across branches.)

Spectre seems to indicate there *is* something fundamentally
wrong with speculative execution (hence with OoO). CPUs
will execute sequences of instructions that do not match the
program they're meant to be running. Execution is observable

https://lwn.net/Articles/743850/
https://lwn.net/Articles/743859/


through a wide variety of side channels. It doesn't matter how
rigorously we prove the security of our software, and how it
avoids revealing any secrets over those side channels, if the
CPU is going to execute something arbitrarily different. It
therefore becomes impossible to write secure software.

Is it time for open processors?
Posted Jan 10, 2018 17:37 UTC (Wed)
by Jonno (subscriber, #49613) [Link]

> Spectre seems to indicate there *is* something
fundamentally wrong with speculative execution 

No, Spectre only indicates that there is something
fundamentaly wrong with *some* speculative execution.

In the RISC-V community, the current consensus seems to
be that only the following 4 categories of speculation are
potentially problematic:

- Using a speculated register value as a memory address 
- Using a speculated register value as a branch condition 
- Using a speculated register value as a jump/branch target 
- Using a speculated register value in a variable-time
instruction.

If you avoid these, all other speculation should be fine,
notably including prefetch, branch prediction, fixed-time
instructions, and using retired registers as  
memory adresses / branch conditions / jump/branch targets
/ variable-time instruction arguments.

Is it time for open processors?
Posted Jan 10, 2018 17:42 UTC (Wed) by Cyberax (✭
supporter ✭, #52523) [Link]

You can have CPUs with speculative execution but not
speculative memory fetches. I.e. CPU will be able to

https://lwn.net/Articles/743927/
https://lwn.net/Articles/743930/


reorder and/or parallelize code like this to better utilize
available ALUs: 
> a = b + c 
> d = a << 2 
> e = k + 1 

But it won't do any memory fetches.

Is it time for open processors?
Posted Jan 10, 2018 22:43 UTC (Wed)
by brouhaha (subscriber, #1698) [Link]

Or you can have OoO with speculative execution, but
allow speculative loads ONLY from cache. Without
doing a lot of simulation, I don't know how much
performance that would gain compared to having no
speculative loads. Obviously it depends on the data
cache hit rate.

Is it time for open processors?
Posted Jan 13, 2018 13:15 UTC (Sat)
by ianmcc (subscriber, #88379) [Link]

I'd imagine that loading something into cache would
be a major performance benefit of speculative
execution. We'll have to wait and see what they come
up with, but I reckon it will be some kind of separate
cache for speculative execution.

Is it time for open processors?
Posted Jan 13, 2018 14:20 UTC (Sat)
by excors (subscriber, #95769) [Link]

And a separate L2 cache, and L3, and eDRAM, and
TLBs? and some other magic to deal with reading
data that's currently dirty in another core's cache? I

https://lwn.net/Articles/743980/
https://lwn.net/Articles/744231/
https://lwn.net/Articles/744232/


don't understand how it could be feasible to read
memory without it being observable in some way. 

(Even reading from L1 cache might be observable,
if it modifies some LRU-replacement state inside
the cache.)

Is it time for open processors?
Posted Jan 10, 2018 17:11 UTC (Wed) by tpo (subscriber,
#25713) [Link]

I think there *is* something fundamentaly wrong with the
concept of OoO execution and that is that it makes it hard to
reason about computing. The abstraction is not well defined,
it's not orthogonal, its boundaries and also it's state machine
are unclear. As excors said, Spectre is a symptom of this. 

If f.ex. you are confronted with the question:

* how much power does this instruction consume? 
* how much time and how many cylcles will it take to
execute? 
* can it cause an interrupt or be interrupted? 
* etc.

then every answer will contain a lot of "it depends" and in the
end you won't be certain anyway because an execution of a
single CPU instruction is an extremely complex undertaking.
Or in other words in the equation:

outputs =f_cpu_instruction( inputs )

you have really no idea what exactly the opaque inputs are
and what the visible or invisible outputs will be, if you
consider the equation to consist of more than just the opcode
and it's parameters. A modern CPU really is a "strange
machine".

https://lwn.net/Articles/743923/


So the real question IMHO is again: are we sure that
complexity and not well defined behavior really are the price
we have to pay for performance?

Is it time for open processors?
Posted Jan 10, 2018 21:17 UTC (Wed)
by farnz (subscriber, #17727) [Link]

The challenge is that moving the "it depends" from silicon
to software is known to be a difficult undertaking.

We know from HP's old Dynamo work (a PA-RISC JIT
interpreter running on a PA-RISC system) that optimizing
code based on runtime information can provide extra
performance not available if you optimize based only on
information available at compile time, and that the benefit
of doing so can outweigh the cost of a JIT interpreter, let
alone dedicated silicon that does the job.

We know from the fates of VLIW processors, Transmeta
and Intel's Itanium that's it's hard to produce a chip design
that's simple to reason about (Itanium, at least, exposed
most of the complexity to software, and was easy to reason
about at the assembly level, because all the hard stuff that
makes modern x86/ARM/POWER etc difficult to reason
about is in the software instead of the hardware). Further,
the lack of a FPGA Mill (or, indeed, anything other than
simulation) implies that they're finding it hard to design a
predictable CPU that performs well on the workloads
people care about.

Given all this history, I'd expect there to be at least one
PhD's worth of advances in the state of the art required, if
not multiple, before we can get to a point where high
performance CPUs are simple enough to be predictable. I
suspect this is why the Spectre researchers expect it to keep
haunting us - we are currently facing the choice between
sacrificing a significant chunk of both performance and

https://lwn.net/Articles/743961/
http://www.hpl.hp.com/techreports/1999/HPL-1999-77.html


energy efficiency but being secure, or trying to patch the
known side channels as we spot them. Neither is a
particularly nice place to be in; still, if you ever fancy
doing a PhD in computer architecture, this would be a great
problem to tackle :)

Is it time for open processors?
Posted Jan 11, 2018 21:12 UTC (Thu) by mtaht (✭
supporter ✭, #11087) [Link]

"Further, the lack of a FPGA Mill (or, indeed, anything
other than simulation) implies that they're finding it hard
to design a predictable CPU that performs well on the
workloads people care about". 

Um, no, they've been ready to start towards an FPGA
implementation for a while and have stalled out for lack
of the funding required (they estimate about 10m). It's
kind of hard to explain the Mill feature set and long term
payoff to VCs that would rather find the next big thing
in web services without the "heavy semi" level of
investment required to make a new chip from the ground
up.

I am kind of hoping that post-spectre "because, security"
might now be a more valid argument to those with a
long term viewpoint or money at risk.

Confession: I am an unabashed Mill fan. It's way less
baroque than the itanium was. I'm not going to sit here
and write about my favorite top 10 features here but
have always encouraged frustrated folk to have a beer,
queue up a talk, and inspect the architecture and
instruction set, and dream a little. Am I alone in
remembering how fun that was in the days Byte
Magazine stalked the earth?

https://millcomputing.com/docs/

https://lwn.net/Articles/744097/
https://millcomputing.com/docs/


Even though their business model for the chip logic
itself does not have open source as part of it presently,
certainly most of the tools will become so (example their
compiler is LLVM based).

No matter if they succeed or fail, the ideas they've put
forth are worth thinking about.

That said, there is no way that the Mill would enter a
Xeon-like market in its first 3 generations - but it could
displace 100s of millions of virtual-memory-less DSPs
and compete with arm on the low end after it first taped
out in a reasonable process. I worry a lot about the
security and reliability of all the 260+ cpus in a modern
car, for example. I worry about the constant decline in
real-time functionality we're seeing in mainstream cpus
(and the related rise of unsecured co-processors sharing
memory space). Does a tesla need KPTI?

I also am a fan of more software engineers getting
interested in EE (programmers and EEs need to start
going to the same parties again because they barely
share a common language nowadays) . I wish efforts like
DARPA's CRAFT program to find ways to accelerate
chip design and validation was better funded. I'm a
strong supporter of the RISC-V effort (not just to have
an open source set of chips but as teaching tools for the
next generation of EEs, and in particular, develop better
hardware design languages). R&D into software
methods in support of better hardware design used to be
a vibrant and interesting field back in the 80s. R&D into
micro-kernels and capabilities has been mostly dead for
years...

After being thoroughly exposed the security exposures
getting worse by the day while doing the cerowrt project,
I almost dropped out of the bufferbloat project and went
to work on the Mill.



Is it time for open processors?
Posted Jan 12, 2018 9:54 UTC (Fri)
by farnz (subscriber, #17727) [Link]

Honestly, given the cost of doing an FPGA
implementation, that sounds like an excuse - I'm not
expecting the first FPGA implementation to be
particularly high end (it's just a proof of concept, after
all). They're spending money on salaries for people to
write the simulations already - they can afford to
spend that same money on people writing HDLs
instead, and a Stratix 10 dev kit is under $10,000. 2.8
million logic elements won't be enough for a high end
CPU design, but should be plenty to show that their
lowest end design is workable at a reasonable clock
speed (say 800 MHz or so). And I've watched all of
Ivan's talks - I'm not convinced that it'll actually be
possible to implement all of the Mill in an acceptably
performant fashion (for an FPGA implementation,
competitive with a soft core in the same FPGA - say a
low end ARM Cortex); I suspect that it'll be very hard
to design something that matches the functional
simulations that we've seen and that manages a decent
clock speed under timing closure.

I'm not expecting amazing results from an FPGA
design, after all - but I've seen enough of the industry
to know that if you can't demo your digital logic in
anything other than a simulator you wrote, there's
likely to be significant issues actually transposing the
design from simulation to hardware. The most
common foul-up I've seen is cases where, once you
implement in hardware, you can't make timing closure
without a hugely long critical path; this won't
necessarily show in a functional simulation, because
you don't have to simulate gate delays.

https://lwn.net/Articles/744124/
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-s10-fpga.html


It's also worth remembering that this class of attack
relies on untrusted code sharing the same device as
your code; as long as the critical car electronics is kept
separate from infotainment, reporting etc, and only
connected via Ethernet/CANbus or similar
communications methods, they don't apply. Thus, the
autonomous driving functionality of a car doesn't have
to care about these attacks - while they may well be
possible, if the only code running on the autonomous
CPUs and the motor/steering control CPUs is trusted
and does not accept arbitrary user input (which rules
out a music player being part of the trusted domain -
you get a blob of data from the user), then the attack is
harmless; same can apply within companies, where it
doesn't matter if the payroll process can, by being
attacked, reveal payroll information to the pay
increase process on the same system.

Is it time for open processors?
Posted Jan 12, 2018 12:45 UTC (Fri) by mtaht (✭
supporter ✭, #11087) [Link]

I think the Mill long ago passed the "show me the
gates" stage also. 

Although the costs of devkits like the stratix-10 are
now quite reasonable, perhaps the ultrascale (50m
gates) would be better.

I also don't think it could be a competitive softcore.
An FPGA POC would shed doubts and bootstrap
software development, only - both direly needed
though!

* The width of various busses is a problem 
* The stack spiller is complicated 

https://lwn.net/Articles/744131/


* dozen other things like cache design are not off
the shelf

I wouldn't even hazard a guess as to the achievable
clock rate in an FPGA. Something greater than 0
would be nice.

Is it time for open processors?
Posted Jan 12, 2018 16:07 UTC (Fri)
by farnz (subscriber, #17727) [Link]

I wouldn't expect it to be a competitive softcore -
as far as I'm concerned, the point of building
something like the Mill as a softcore filling an
entire Stratix 10 is to show that the performance
results you get from simulation are achievable in
real hardware, too, and that when you say that
you can scale up performance in an ASIC, you're
not pulling numbers from your fundament.

Also, to bring this full circle, the point of
including Mill in the list was to show that it's not
easy to do well at high performance predictable
processors. Transmeta failed with an existing
(well-understood) ISA and JIT to the predictable
CPU; Itanium failed despite having two big tech
companies (HP and Intel) pushing it hard. Mill is
doing the start from scratch and design
everything for predictability thing, and despite
over a decade of work from serious engineers
(none of the Mill team strike me as clueless
dreamers), they've still not got product. So, of the
efforts to be high performance and predictable,
the only one that has shipped product and not yet
been canned is Nvidia's Denver series - but even
that's now being paired with "traditional" OoO

https://lwn.net/Articles/744150/


cores, and we don't yet know whether Carmel is
a traditional OoO core, or a Denver JIT core.

Basically, this stuff is hard, and so far, there's no
constructive proof that we can do a predictable
core that's as fast for real workloads as a
traditional OoO core with all the tricks.

Is it time for open processors?
Posted Jan 16, 2018 18:27 UTC (Tue)
by mtaht (✭ supporter ✭, #11087) [Link]

just for the record, the mill folk published a
paper on spectre/meltdown vs mill: 

https://millcomputing.com/blog/wp-
content/uploads/2018/01...

I am long-term curious about novel attacks
against the PLB management code, however,
I'm too low on sleep to care for a good long
time.

Is it time for open processors?
Posted Jan 16, 2018 19:37 UTC (Tue)
by excors (subscriber, #95769) [Link]

That paper seems to get decreasingly
confident towards the end. The introduction
states simply: 

> The Mill CPU is not vulnerable to the
Spectre and Meltdown attacks. The Mill is
an in-order machine and Spectre and
Meltdown as described take advantage of
speculative execution on out-of-order
machines.

https://lwn.net/Articles/744514/
https://millcomputing.com/blog/wp-content/uploads/2018/01/Spectre.03.pdf
https://lwn.net/Articles/744521/


but later they say that it was effectively
vulnerable to Spectre because of a compiler
feature (it could generate code that
performed speculative reads).

Given that code always gets transformed
through multiple levels of
software/firmware/microcode/hardware
before finally executing any operations, and
modern "in-order" CPUs (Denver, the Mill,
etc) seem to still use speculation to improve
performance and just implement it slightly
higher in the stack of transformers than
traditional OoO CPUs, "in-order" vs "out-
of-order/speculative" seems a fairly
artificial distinction - what matters for
security is the combined result of the entire
stack. (At least it's easier to disable
speculation if it's happening at a higher level
than hardware, since you can push a
software/firmware/microcode update instead
of new silicon, but it might still suffer the
same performance impact.)

They also say:

> The Mill has not been vulnerable to
Spectre variant 2 because the Mill has a
very short pipeline and low mispredict
penalty, so loads erroneously issued will be
revoked in time before they have any side
effects. This was an unanticipated side
effect of the Mill design

which seems to indicate that being an in-
order machine *doesn't* make the hardware
fundamentally immune to Spectre anyway,



it was just a lucky result of their current
pipeline design.

Is it time for open processors?
Posted Jan 20, 2018 8:24 UTC (Sat)
by igodard (guest, #105242) [Link]

The Mill architecture is not vulnerable to
Meltdown or Spectre. In the course of
verifying that assertion we found a bug in
the compiler that would cause it to
sometimes schedule loads without the
predicates that were supposed to guard
them. We fixed that. 

The Mill makes no guarantee that system
software is bug free; no compiler does.
There are bug reports that I filed against
gcc that are still open a decade later. If a
compiler turns source "(x+y)*z" into
machine code that computes "x+(y*z)"
then that is a bug in the compiler, not a
flaw in the architecture. Likewise, if a
compiler turn source "if (b) x = y;" into
"t0 = y; if (b) x = t0;" then that is a bug in
the compiler, not a flaw in the
architecture.

That was the bug we found. The correct
machine code computes "b? t0 = y; if (b)
x = t0;". It's been fixed.

Is it time for open processors?
Posted Jan 20, 2018 10:09 UTC (Sat)
by farnz (subscriber, #17727) [Link]

Arguably, this is where the Mill design
shows its strength; because almost all

https://lwn.net/Articles/744833/
https://lwn.net/Articles/744842/


the speculation is done in the
compilers, you only need to update
software as and when a new Spectre-
like problem is found. Further, where
there's no security boundary between
two chunks of code (hence no worry
about Spectre - why use a side-channel
attack when you can read directly?),
Mill can compile in extra speculation,
whereas Intel has to leave that
speculation out just in case.

Is it time for open processors?
Posted Jan 21, 2018 9:06 UTC (Sun)
by smurf (subscriber, #17840) [Link]

> if a compiler turn source "if (b) x =
y;" into "t0 = y; if (b) x = t0;" then that
is a bug in the compiler 

Depends on the memory model. If
there's no way y might be in
inaccessible memory and it's not
marked as volatile, I wouldn't consider
that change to be a bug.

Is it time for open processors?
Posted Jan 20, 2018 8:06 UTC (Sat)
by igodard (guest, #105242) [Link]

Show me the gates? 

There are critical paths in development as in
CPUs. There's no point in doing FPGA work
until you have proven in sim that a concept is
correct and is what you want and fits with the
rest. But you have to feed the sim, so you need a
tool chain. And even when you have it all in

https://lwn.net/Articles/744864/
https://lwn.net/Articles/744832/


house, if the sim or FPGA exposes nifty ideas
then you can't publish either until the patents
issue. And there are iterations at each stage as
you find things that don't work, or get better
ideas. Heavy semi takes a long time, just like
cement plants and steel mills. It takes the Intels a
long time too.

Showing gates to tire-kickers is at the very end of
that.

Is it time for open processors?
Posted Jan 20, 2018 8:45 UTC (Sat)
by Cyberax (✭ supporter ✭, #52523) [Link]

> then you can't publish either until the patents
issue 
Until you _file_ for a patent.

Is it time for open processors?
Posted Jan 20, 2018 7:50 UTC (Sat)
by igodard (guest, #105242) [Link]

I wish we could move salaries from simulator to
FPGA, but you apparently missed the memo - the
Mill project has always been bootstrap, and there
never have been salaries for anyone. Our part-
timers are dedicated, but still not full time, and still
paid only sweat-equity.  

Is it time for open processors?
Posted Jan 20, 2018 10:04 UTC (Sat)
by farnz (subscriber, #17727) [Link]

That just emphasizes my core point; doing a high
performance CPU design that's also highly
predictable is hard. You've been working on this

https://lwn.net/Articles/744834/
https://lwn.net/Articles/744831/
https://lwn.net/Articles/744839/


for around 10 years now, and still aren't in a
position to make money from it. When you
combine that experience with Intel's Itanium, and
Transmeta's long term fate, it's clear that the
reason that commercially successful high
performance designs are all either massively
multithreaded (Nvidia GPUs, Intel Xeon Phi) or
vulnerable to Spectre (high end ARM, Intel
Core) is not that there's a silver bullet we're all
overlooking, but that even with very clever
people working on a new design, it's a really hard
problem, and it's really hard to go from
"interesting ideas" to "demonstrable ability to
build a CPU that could be competitive given
money".

I included Mill because you're attempting
something interesting in the "CPUs that are
completely predictable" space, and you're not
getting huge wins quickly - you're evidence that
high performance processor design is
fundamentally hard, even if you throw away
"conventional wisdom". Given your experience,
Itanium, and Transmeta, I feel confident in
saying that there's no easy way to design fast
CPUs that don't do speculative out of order
execution; there are hard ways, but then we're
looking at engineering tradeoffs.

Is it time for open processors?
Posted Jan 11, 2018 3:50 UTC (Thu) by areilly (subscriber,
#87829) [Link]

Many loads? I imagine that there are some that might get to a
factor of five, but I'm interested to know what the factor-100
ones look like. 

https://lwn.net/Articles/744006/


There are plenty of other workloads, of the dense numerical or
media-processing variety where out-of-order doesn't buy very
much at all, which is why most embedded DSPs are in-order
VLIW-shaped, and why the much smaller in-order Cortex A53
is rarely more than a factor of two slower (per cycle) than the
much bigger out-of-order cores, on that sort of workload.

I'd be quite interested to know how many of those factor-100
workloads survive latency/throughput tradeoffs against flock-of-
chickens style systems, or custom hardware.

Anyway, the world is an interesting place, with many different
workloads, so it's hard to generalize. In the absence of much
extra cost, of course everyone will buy the fastest single-thread
option. But if the cost goes up, as a result of work-arounds,
things can change. Or if ways to speculate safely turn out to be
less expensive than thought, then it's all back on again.

Is it time for open processors?
Posted Jan 11, 2018 14:59 UTC (Thu) by excors (subscriber,
#95769) [Link]

Cortex-A53 (in-order) vs Cortex-A57 (out-of-order) does
seem to be about a factor of 2 difference in typical
benchmarks at the same frequency. (And a greater-than-2
difference in power and area). I guess the problem is that it's
hard to push an in-order design significantly further than the
A53. You could add more execution units but you won't be
able to use them since you can't extract any more parallelism
from typical code. You need a short pipeline (since long ones
are expensive to stall, and in-order stalls a lot), but that makes
it hard to run at higher frequencies. The memory system
needs to prioritise latency over bandwidth and capacity. Etc.
Meanwhile OoO designs *can* go significantly further than
the A57, as demonstrated by high-end Intel CPUs (or even by
newer ARM cores) - the main benefit doesn't come directly

https://lwn.net/Articles/744044/


from OoO itself but from all the other optimisations that
become viable once you have OoO.

Is it time for open processors?
Posted Jan 11, 2018 19:45 UTC (Thu)
by areilly (subscriber, #87829) [Link]

Don't get me wrong: I'm a big fan of out-of-order designs.
It's incredibly cool that it can be made to work at all, and
you can't say no to the straight-line speed, when it's on
offer. Certainly takes a lot of the effort off careful
processor-specific optimization at the code and compiler
level. But if it turned out that we've been chasing an
illusion, and not being able to speculate loads that miss in
the cache knocks most of the performance benefit off (I've
seen credible measurement of 37% performance loss on
Haswell from ISBS MSR protections for Spectre, for
compilation tasks) then a re-think might be in order. 

I don't agree that A53 is as far as in-order can be pushed,
although it is a beautifully balanced design for its niche. It's
only two-way scalar, and its SIMD units are only 64-bits
wide. There's plenty of room to grow. Even within the
ARM world, the Denver cores are 7-ish way scalar in-order
and clock as fast as any of the other mobile devices. The
in-order SPARC cores were never as fast in single-thread
benchmarks as out-of-order cores of the day, but they
weren't as much slower than the (older) intel Core parts
after the Spectre mitigations are enabled.

I remember the discussions when Alpha was going wide
but still in-order, and competing against early out-of-order
MIPS cores. The compilers were happy enough to compile
some speculation into the code, by turning short
contitionals into execute-both-branches-and-conditional-
move-result style. Probably not possible to do that over a
200-instruction speculation window like current cores, but

https://lwn.net/Articles/744085/


you'll get some of the way. And they weren't building wide
SIMD vectors back then.

Is it time for open processors?
Posted Jan 11, 2018 23:49 UTC (Thu)
by excors (subscriber, #95769) [Link]

I believe Cortex-A53's NEON is actually 128-bit wide
(or 2x64), for most float and int operations. 

The 7-wide vs 2-wide comparison seems a little
misleading - I think Denver doesn't have many more
execution units than A53, the main difference is that
Denver can theoretically decode and dispatch to all 7 at
once (when using its custom VLIW ISA, and apparently
only in unlikely cases where all 7 micro-ops can fit into
one 32B bundle; and apparently it needs an average of
1.8 micro-ops per ARM instruction, so it can practically
do maybe 3 ARM instructions per cycle).

It sounds like Denver's ARM-to-VLIW optimiser
actually does something equivalent to speculative
execution (statically predicting branches and emitting
speculative micro-ops to keep the execution units busy),
so could be vulnerable to Spectre. At least the optimiser
is just software so they could fix it fairly easily (at some
performance cost).

In some ways I think that reinforces my (not-very-well-
thought-through) argument :-) . Denver's hardware might
be technically in-order, but they use lots of the normal
out-of-order techniques (with most of the same costs and
risks) to achieve just 3 ARM-instructions per cycle.
Presumably they wouldn't have bothered with all that
complexity if they could have reached the same much-
better-than-A53 performance with a pure in-order
design.

https://lwn.net/Articles/744105/


Is it time for open processors?
Posted Jan 12, 2018 1:22 UTC (Fri)
by excors (subscriber, #95769) [Link]

Oh, in addition to the static speculation performed by
the optimiser, apparently the Denver hardware
continues executing speculatively after a cache miss
(in the hope that subsequent instructions with not-
quite-correct data will pull useful things into the
cache) then rolls back once the data arrives. That
sounds like a second vector for Spectre, and one that
can't be simply disabled in the optimiser. 

(This is based on the information
in https://piazza.com/class_profile/get_resource/hzbgx
hrhoe3...)

Is it time for open processors?
Posted Jan 12, 2018 2:27 UTC (Fri)
by jcm (subscriber, #18262) [Link]

Forward speculation like that is called "runahead". I
believe Intel do similar on some of their cores. As
do others. And yes, it's ripe for analysis.

Is it time for open processors?
Posted Jan 11, 2018 19:44 UTC (Thu) by Cyberax (✭
supporter ✭, #52523) [Link]

Stuff with a lot of pointer chasing, like linear algebra on large
sparse matrices.

Is it time for open processors?
Posted Jan 11, 2018 19:59 UTC (Thu)
by areilly (subscriber, #87829) [Link]

https://lwn.net/Articles/744107/
https://piazza.com/class_profile/get_resource/hzbgxhrhoe322v/i2ctm26s481e1
https://lwn.net/Articles/744109/
https://lwn.net/Articles/744087/
https://lwn.net/Articles/744088/


True, that is probably the biggest win for designs that can
speculate through loads, but that's precisely the sort of code
that is going to be hit on the head by the Spectre
mitigations anyway. I can imagine an HPC installation (or,
indeed, a big-iron database installation) coming to the
conclusion that they're going to rely on the fact that they
don't run user-provided code on their isolated machines,
and their normal malware protection protocols are up to the
task: they just won't enable the mitigations. I certainly
wouldn't if I was running something on a single-function
embedded system. 

If your twisty pointer-chasing sparse linear algebra is going
to run on someone's cloud infrastructure though, they'll
have the mitigations turned on, and it will run badly
anyway. So you can re-code to speculate explicitly, in
software, (Itanium style), or demand a discount and just
turn on some more processors. There have been some nice
research papers about running code like that on pairs of
cores, (hyper-thread style), with one core of the pair
scampering ahead and speculating the memory pattern, so
that the speculated lines are in cache, while the other grinds
away doing the math, directly out of cache. I doubt that
there are many compilers that can construct that sort of
code automatically, because the Out-of-order cores did
such a great job on their own. Now's the time to dig them
up, perhaps.

Is it time for open processors?
Posted Jan 11, 2018 20:16 UTC (Thu)
by joib (subscriber, #8541) [Link]

HPC systems I'm familiar with tend to have hundreds of
accounts, all with shell access (via ssh). And users who
are scientists, and not computer experts (many struggle
with things like ssh keys etc.). They are a phished
account + local root vuln. away from pressing the "nuke

https://lwn.net/Articles/744091/


from orbit" button. Presumably it's different for
supercomputers used for nuclear weapons research.. 

As for the dual thread idea, maybe you're thinking of
"scout threads" that Sun was investigating back in the
day?

Is it time for open processors?
Posted Jan 11, 2018 20:27 UTC (Thu) by Cyberax (✭
supporter ✭, #52523) [Link]

SPARC actually explored the "multiple threads" idea.
Basically, instead of waiting for a load to finish they
switch to another thread. This worked reasonably well
only for embarrassingly parallel workloads like web
servers.

Is it time for open processors?
Posted Jan 11, 2018 20:21 UTC (Thu) by joib (subscriber,
#8541) [Link]

> like linear algebra on large sparse matrices. 

Luckily for linear algebra we have solutions that don't
require speculation for performance, namely vector
processing (I mean "real" vector ISA's not the short vector
packed SIMD extensions popular in current
microprocessors). Or GPU-style SIMT, if that floats your
boat. Sure, in the short term it's going to be painful, but we
know how to engineer ourselves out of this particular hole.

Many other workloads aren't so fortunate.

Is it time for open processors?
Posted Jan 11, 2018 20:23 UTC (Thu) by Cyberax (✭
supporter ✭, #52523) [Link]

https://lwn.net/Articles/744094/
https://lwn.net/Articles/744092/
https://lwn.net/Articles/744093/


It doesn't help with sparse matrices, unfortunately. I also
encountered the same problems when I was doing
bioinformatics, namely DNA assembly.

Is it time for open processors?
Posted Jan 11, 2018 20:34 UTC (Thu)
by joib (subscriber, #8541) [Link]

> It doesn't help with sparse matrices, unfortunately.  

Vectorizing sparse matrix operations tends to be the
textbook example for the usefulness of scatter/gather
in vector ISA's.

I guess today scatter/gather isn't as awesome as is
used to be, as with current arithmetic/bw ratios on
mainstream CPU's the CPU becomes memory bound
anyway. But with less opportunity for speculation,
perhaps there's place for a comeback (AVX-512,
ARM SVE, and the RISC-V V extension all have
them).

Is it time for open processors?
Posted Jan 17, 2018 15:15 UTC (Wed)
by mstone_ (subscriber, #66309) [Link]

unfortunately the consumers of such products don't have
the pocketbooks to support the development of such
products--that's why everyone is now running
commodity CPUs.

Is it time for open processors?
Posted Jan 10, 2018 16:57 UTC (Wed) by jezuch (subscriber,
#52988) [Link]

I think Intel tried that with Larrabee. And Sony with Cell. If that's the
future then these efforts were significantly before their time :)

https://lwn.net/Articles/744095/
https://lwn.net/Articles/744569/
https://lwn.net/Articles/743925/


Is it time for open processors?
Posted Jan 10, 2018 17:48 UTC (Wed) by excors (subscriber,
#95769) [Link]

Larrabee failed because it was meant to be a GPU, and it took
years to realise their architecture had terrible performance when
used as a GPU. But it led to Xeon Phi which has been used in quite
a few supercomputers, so it seems the general concept can work
for some software. 

With Cell, I got the impression the main problem was that the
SPEs were complex and unfamiliar - they probably weren't a
fundamentally flawed architecture, but game developers didn't
have the experience or tools to use them effectively, so they were a
huge pain in practice. And they didn't give much better
performance than a standard 3-core CPU plus GPU, so they
weren't worth the costs. But nowadays game developers are having
to deal with 8-core CPUs and GPGPU, and probably expecting
future consoles to go even wider, so they're designing engines with
task-based parallelism that can easily scale to large numbers of
cores and can mix CPU and GPU tasks, so they should be better
able to cope with a Cell-like system now.

Is it time for open processors?
Posted Jan 11, 2018 3:40 UTC (Thu) by jimzhong (subscriber,
#112928) [Link]

I think with the help of powerful optimizing compilers, in-order
processors can be competitive with OoO ones.

Is it time for open processors?
Posted Jan 11, 2018 10:16 UTC (Thu) by farnz (subscriber,
#17727) [Link]

That was what the Intel Itanium was supposed to be - an in-order
core that was as powerful as the best OoO cores they could build.
It didn't work out that way - the "powerful optimizing compiler"

https://lwn.net/Articles/743931/
https://lwn.net/Articles/744007/
https://lwn.net/Articles/744025/


never got good enough to be as fast on the in-order core as OoO
cores were when you applied the same compiler power.

Further, the HP Dynamo work gives us reason to believe that
runtime optimization will always be necessary to get peak
performance; on an OoO processor of the late 90s, they
demonstrated that a JIT recompiling native code to native code
was faster than just running the native code directly.

I suspect that there are multiple PhDs worth of work to go from
where we are today (complexity in OoO hardware, which "JITs"
the native code into fast executing code), to a world where in-order
CPUs are as fast as OoO CPUs; we need a good runtime JIT to
convert a useful intermediate form to something that can be
executed, and we need to know what the intermediate form and the
something that can be executed should look like.

And looking around at the market, this isn't something that's not
been tried: Itanium failed (no-one even wrote a useful JIT for it);
Transmeta failed (maybe it could have done better if the code
morphing had been open, but I doubt it); Mill hasn't yet got as far
as an FPGA model, let alone real silicon (so may never get to a
high performance implementation - if you can't do hardware, only
simulations, then you run the risk of real hardware massively
underperforming for reasons your simulation didn't take into
account, like thermals).

Is it time for open processors?
Posted Jan 11, 2018 21:39 UTC (Thu) by areilly (subscriber,
#87829) [Link]

Nvidia's Denver core is the current poster child for this idea. It
gets past the slow startup problem by having a single-issue
hardware decode path, so the JIT doesn't have to fire up unless
it's busy code. Worked competitively in my old Nexus-9. Would
be nice if you could compile your dense linear algebra directly
to the VLIW core of you wanted to, imo. 

http://www.hpl.hp.com/techreports/1999/HPL-1999-77.html
https://lwn.net/Articles/744102/


Is it time for open processors?
Posted Jan 12, 2018 10:00 UTC (Fri) by farnz (subscriber,
#17727) [Link]

It will be interesting to see what happens with Denver, yes -
Nvidia has already gone from "Denver1 is the only CPU core
you need" (in the K1) to "Denver2 is paired with ARM's
Cortex-A57 so that Denver2 only provides the high-
performance cores" (in the X2). If Carmel is effectively
Denver3, then that validates the idea (to a degree), but if it's a
more "traditional" ARM core, Denver can be added to the list
of "couldn't quite make it work out" variants on the "fast in-
order core, with complexity in software".

Is it time for open processors?
Posted Jan 11, 2018 4:43 UTC (Thu) by dvdeug (subscriber, #10998)
[Link]

I've thought about going back to 1970 and give a lecture to a
conference on programming languages on modern programming
languages. The hardest question would be concurrency. Go's going
back to Algol 68 and coroutines, Scala supports threads and actors
<i>and</i> parallel data structures, and then we've got stuff like
Spark and Hadoop on the large scale and direct CPU vector support
at the lowest level. That's a huge range of options and remarkably
little consensus about which ones are better. We're already pushing
people towards more parallelism, given that quad-cores are becoming
standard on desktops, but it's really hard.

Is it time for open processors?
Posted Jan 12, 2018 6:44 UTC (Fri) by paulj (subscriber, #341)
[Link]

That's exactly the premise behind the UltraSPARC T1 and T2:
Simple in-order core. Instead of trying to extract parallelism out of a
single execution stream, it instead optimises for the software

https://lwn.net/Articles/744127/
https://lwn.net/Articles/744011/
https://lwn.net/Articles/744117/


explicitly being coded for parallelism by creating threads. If a thread
of execution stalls on memory, the core switches to another. 

The benefit to ditching all the logic and long pipelines to support
OoO and speculative execution, and using simple, in-order
execution, is that you can pack a lot more of those cores into the
same transistor budget.

So you get a CPU that scales up really to handle loads that scale-out
via threads of execution. The downside is that any single thread of
execution is (much) slower than on a highly pipelined, speculative,
OoO processor.

Is it time for open processors?
Posted Jan 9, 2018 23:46 UTC (Tue) by immibis (subscriber, #105511)
[Link]

How much does it cost to get an OS kernel into production in billions of
devices?

Is it time for open processors?
Posted Jan 10, 2018 0:05 UTC (Wed) by balkanboy (subscriber,
#94926) [Link]

You can always force a paradigm shift by introducing a good crisis just
like this one w/Spectre & Meltdown, particularly if it affects large
groups of people among which are also CPU manufacturer
shareholders. One doesn't get Intel to budge unless there's something in
it for them or you introduce a real threat to their existing, business-as-
usual model. 

I know I shouldn't be, but I am kind of glad this happened - it provides
a major kick in the ass for Intel and makes AMD looks good - they
needed a boost like this in addition to a stellar new CEO, Lisa Su.

Is it time for open processors?
Posted Jan 13, 2018 7:20 UTC (Sat) by alison (subscriber, #63752)
[Link]

https://lwn.net/Articles/743764/
https://lwn.net/Articles/743769/
https://lwn.net/Articles/744217/


> "you'll *never* see a high end Xeon-class core unless some
billionaire  
> funds it as a pet project, and keeps investing year after year for the  
> greater good." 

sed -i -e 's/some billionaire/Huawei/g' and the plan starts to sound
possible.

Is it time for open processors?
Posted Jan 13, 2018 7:22 UTC (Sat) by alison (subscriber, #63752)
[Link]

> "you'll *never* see a high end Xeon-class core unless some
billionaire  
> funds it as a pet project, and keeps investing year after year for the  
> greater good." 

sed -i -e 's/some billionaire/Huawei/g' and the plan starts to sound
possible.

Is it time for open processors?
Posted Jan 21, 2018 9:38 UTC (Sun) by lkcl (guest, #60496) [Link]

well, by accident i have encountered a potential solution, there. a couple
of months ago i contacted the head of the shakti team in india, and was
surprised that he was extremely enthusiastic to hear from me. whilst
extremely busy with an experimental 20nm low-power tape-out, he did
have time to communicate that he had basically been given
UNLIMITED resources by the Indian Government to, and i quote, "Piss
All Over ARM And Intel". 

due to the sheer volume of the market in india he is being taken
seriously by various companies who have offered him FREE access to
tools, FREE access to top-end foundries for experimental (MVP)
samples at 20nm, 28nm and 40nm (one of each), and he in turn has
offered the open hardware and free software community ACCESS to
that opportunity.

https://lwn.net/Articles/744218/
https://lwn.net/Articles/744865/


so all the costs normally associated with getting a processor out the
door are GONE.

how d'ya like them apples? :)

http://rhombus-tech.net/riscv/shakti/m_class/

Is it time for open processors?
Posted Jan 9, 2018 15:29 UTC (Tue) by joib (subscriber, #8541) [Link]

> Meanwhile, for low-end applications, there is a compressed instruction-
stream format intended to reduce both memory and energy needs. 

FWIW, to nitpick, this isn't specifically for low-end applications.

In fact, one of the stated reasons why the compressed extension is an
extension and not part of the base ISA is that for the lowest of the low
end, the extra complexity in the decoder might not be worth it.

Is it time for open processors?
Posted Jan 9, 2018 15:51 UTC (Tue) by ken (subscriber, #625) [Link]

Does there exist even a a single out of order open implementation of a
CPU?

Is it time for open processors?
Posted Jan 9, 2018 16:07 UTC (Tue) by mtaht (✭ supporter ✭,
#11087) [Link]

https://github.com/ucb-bar/riscv-boom is an OOO risc-v core. 

Building a risc-v core is almost as simple as typing make, btw, after you
install the java/scala/chisel dependencies. You'd need a supported
FPGA board (the Zynq series is good) and a few proprietary tools to
finalize and write the code, and your cpus will grind for hours or days
compiling it all, but that's it. 

http://rhombus-tech.net/riscv/shakti/m_class/
https://lwn.net/Articles/743669/
https://lwn.net/Articles/743670/
https://lwn.net/Articles/743673/
https://github.com/ucb-bar/riscv-boom


Ironically, once you do all that, you now have a co-processor living in
the much-the-same physical memory space as the main processor, with
all the security headaches that entails.

Is it time for open processors?
Posted Jan 9, 2018 17:19 UTC (Tue) by ejr (subscriber, #51652)
[Link]

The RISC-V folks have silicon as well. And that chip uses an in-
order RV32I for very effective, state-of-the-art power management.
The relevant publications are on either Krste's or Bora's pages.

Is it time for open processors?
Posted Jan 9, 2018 20:39 UTC (Tue) by aleXXX (subscriber, #2742)
[Link]

This is written in Scala ? I expected VHDL or something... 
How do you describe hardware using a more or less normal
programming language ?

Is it time for open processors?
Posted Jan 9, 2018 21:43 UTC (Tue) by nybble41 (subscriber,
#55106) [Link]

> How do you describe hardware using a more or less normal
programming language ? 

By using an "embedded Domain-Specific Language" library (in
this case, Chisel[1]) which generates Verilog when the Scala
program is run, similar to CλaSH for Haskell[2] or MyHDL for
Python[3]. What these all have in common is that they allow you
to use your language of choice as a preprocessor or "template
engine" to generate low-level HDL from relatively high-level
descriptions.

[1] https://chisel.eecs.berkeley.edu/ 
[2] http://www.clash-lang.org/ 
[3] http://www.myhdl.org/

https://lwn.net/Articles/743709/
https://lwn.net/Articles/743738/
https://lwn.net/Articles/743745/
https://chisel.eecs.berkeley.edu/
http://www.clash-lang.org/
http://www.myhdl.org/


Is it time for open processors?
Posted Jan 9, 2018 22:26 UTC (Tue) by mtaht (✭ supporter
✭, #11087) [Link]

Chisel is one of the few bright spots in hardware construction
languages to date, especially as it has been used to build real
processors, and comes with an increasingly large library of
common chip components. SystemC has grown in popularity
too (no open source implementation, however). Underneath it
all, verilog and VHDL are better than in the 80s, but still a
crufty mess that you are lucky to get something that works 1
time in 10. A lot of parameterizing is adhoc and driven by
scripts. Extensive validation and simulation is needed of the
result.  

Open sourced verilog designs are like open sourcing the buggy,
uncommented, assembly language version of the high level
program compiled with -O3.

I am partial to asynchronous circuits (stuff without a central
clock is lower power, doesn't need explicit power management,
and emits less noise, good for sensitive radios).
The http://www.async.caltech.edu/Pubs/PDF/chpasync2012.pdf 
chp design language and compiler were open sourced a ways
back (and is somewhere on github I think but so far can't find
it). We've seen a few interesting new chips built around async
logic recently in the AI space.

Is it time for open processors?
Posted Jan 11, 2018 15:48 UTC (Thu)
by kpfleming (subscriber, #23250) [Link]

There's this too: an asynchronous DSP for media processing
workloads. Vastly lower power consumption. 

http://www.octasic.com/product/oct2224w/

https://lwn.net/Articles/743750/
http://www.async.caltech.edu/Pubs/PDF/chpasync2012.pdf
https://lwn.net/Articles/744055/
http://www.octasic.com/product/oct2224w/


Is it time for open processors?
Posted Jan 10, 2018 3:07 UTC (Wed) by pabs (subscriber, #43278)
[Link]

There are open tools for FPGA synthesis too: 

https://symbiflow.github.io/

More FPGA links here:

https://wiki.debian.org/FPGA

Is it time for open processors?
Posted Jan 10, 2018 7:58 UTC (Wed) by michaeljt (subscriber,
#39183) [Link]

Doesn't an open source CPU on an FPGA just shift the closed source
part down? I might be wrong, as I don't know much about FPGAs.
And the Zynq series seem to have a (presumably closed-source)
ARM inside them - does that replace part of what would other be
done in programmable logic?

Is it time for open processors?
Posted Jan 10, 2018 16:47 UTC (Wed) by somlo (subscriber,
#92421) [Link]

> Doesn't an open source CPU on an FPGA just shift the closed
source part down? 

True, but the closed part is just a large grid of mostly identical
configurable logic blocks (CLBs) with a programmable
interconnect that builds your hardware design more or less like on
a nano-scale "breadboard". As such, there should be much less
magic in those closed bits than there would be in a whole closed
ASIC.

> And the Zynq series seem to have a (presumably closed-source)
ARM inside them

https://lwn.net/Articles/743789/
https://symbiflow.github.io/
https://wiki.debian.org/FPGA
https://lwn.net/Articles/743802/
https://lwn.net/Articles/743916/


That's a hybrid ASIC/FPGA, where they added a pre-optimized-in-
silicon "hard IP core" for applications that frequently require an
ARM chip to free up generic CLBs for other uses. Not
interesting/useful if one's goal is to have an open CPU design
running on the FPGA. Ultimately, one can simply choose to ignore
the closed hard IP core(s) and just utilize the generic CLBs for
everything.

Is it time for open processors?
Posted Jan 10, 2018 23:07 UTC (Wed) by mtaht (✭ supporter
✭, #11087) [Link]

I mentioned the Zynq series with the arm processor in them
because they are an easier way for programmers to get into
futzing with an FPGA and their related toolchains, with a lot of
fairly cheap boards out there with decent linux support. 

It's a lot easier to poke at problems in a FPGA assist when you
already have a working processor on-board.

Pure FPGA work requires you reach for the logic analyzer
immediately.

Is it time for open processors?
Posted Jan 12, 2018 12:56 UTC (Fri) by mtaht (✭ supporter ✭,
#11087) [Link]

boom
v2: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-20...

Is it time for open processors?
Posted Jan 9, 2018 16:07 UTC (Tue) by jebba (✭ supporter ✭,
#4439) [Link]

Berkeley Out-of-Order Machine (BOOM), RISC-V: 

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-20...

https://lwn.net/Articles/743984/
https://lwn.net/Articles/744132/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.pdf
https://lwn.net/Articles/743675/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html


Is it time for open processors?
Posted Jan 9, 2018 17:13 UTC (Tue) by palmer (subscriber, #84061)
[Link]

Well, I certainly hope it is :)

Is it time for open processors?
Posted Jan 9, 2018 18:43 UTC (Tue) by joib (subscriber, #8541) [Link]

There was recently this article about a 17-year old high school student (!)
doing his own integrated circuits in his parents
garage: https://spectrum.ieee.org/semiconductors/devices/the-high... His
plan is apparently to recreate the Intel 4004, which isn't that far off from a
6502 in terms of complexity (IIRC around 2k vs. 3.5k transistors). So,
open source C64 here we come!!111 

The remaining problem, to port Linux, a desktop environment, and
firefox.. :-/

Is it time for open processors?
Posted Jan 9, 2018 18:51 UTC (Tue) by joib (subscriber, #8541) [Link]

I forgot to mention, in the RISC-V world there is the "Micro-riscy"
from the pulp project (http://www.pulp-platform.org/ ) that comes in at
11.6 kGE (so roughly 45k transistors in CMOS) which I would guess is
out of reach for a garage non-cleanroom fab like said high school
student has.

Is it time for open processors?
Posted Jan 15, 2018 13:23 UTC (Mon) by gtg (subscriber, #84695)
[Link]

You mean a bit like this guy? www.megaprocessor.com ;-)

Is it time for open processors?
Posted Jan 15, 2018 20:00 UTC (Mon) by joib (subscriber, #8541)
[Link]

https://lwn.net/Articles/743707/
https://lwn.net/Articles/743719/
https://spectrum.ieee.org/semiconductors/devices/the-high-school-student-whos-building-his-own-integrated-circuits
https://lwn.net/Articles/743724/
http://www.pulp-platform.org/
https://lwn.net/Articles/744333/
http://www.megaprocessor.com/
https://lwn.net/Articles/744421/


Wow! That's, uh, quite cool! :) Thanks for the link.

Is it time for open processors?
Posted Jan 16, 2018 16:26 UTC (Tue) by nix (subscriber, #2304)
[Link]

Actually it probably generates quite a lot of heat. Its power draw is
going to be... high. :)

Is it time for open processors?
Posted Jan 9, 2018 18:57 UTC (Tue) by excors (subscriber, #95769)
[Link]

> RISC-V is indeed not vulnerable to [Meltdown and Spectre] by virtue of
not performing any speculative memory accesses. 

Is that true? Surely it depends on the details of any particular
implementation of the RISC-V ISA, and they could choose to do
speculative memory accesses, or could check access permissions slightly
too late in their pipeline, just like implementations of x86 and of ARM.

The post from RISC-V only says that the Rocket processor and all
"announced RISC-V silicon" are not vulnerable, which is very different to
saying "RISC-V is not vulnerable". BOOM sounds like it might be
vulnerable to Spectre.

Is it time for open processors?
Posted Jan 9, 2018 19:05 UTC (Tue) by joib (subscriber, #8541) [Link]

While Meltdown and Spectre are fascinating and on everybodys minds
right now (and Spectre-style attacks will likely be with us for a long time),
the vast majority of vulnerabilities are still "normal" software ones such as
buffer overflows. 

Speaking of hardware, if we aren't rewriting everything in Rust or some
other memory safe language, one way to make plain C safer would be to
use hardware-enforced bounds checking such as the CHERI project
(https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/ ), which adds

https://lwn.net/Articles/744509/
https://lwn.net/Articles/743728/
https://lwn.net/Articles/743727/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/


hardware support for fat pointers that can be used as capabilities (for a
quick
overview, https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201... ).

Of course, such an approach suffers from a chicken-and-egg problem; if
mainstream architectures aren't supporting it, people won't port software
for it either.. *sigh*

Is it time for open processors?
Posted Jan 9, 2018 22:30 UTC (Tue) by ballombe (subscriber, #9523)
[Link]

I do not know if we need an open processor, but we need a processor with
separate kernel/user address space, as sparc and s390 do.

Is it time for open processors?
Posted Jan 9, 2018 22:42 UTC (Tue) by taintedbit (subscriber, #108080)
[Link]

As a bit of a digression, printers (of the inkjet and laser variety, not the 3D
variety) also seem like they would benefit from a successful open-source
hardware project. 

Printers are notorious for taking control away from and acting hostile
towards their owners and users (e.g., DRM embedded in consumables,
buggy proprietary software packages, invisible tracking dots, remotely
exploitable security flaws, and more). Additionally, although I am not an
electronics expert, it seems plausible to me that someone could build an
open-source printer from a kit in their home.

Every few years I do a few quick searches on the topic, and although a
few incomplete projects have come and gone, I have not yet seen any
lasting, comprehensive, and accessible open printer project. The main
reason for this seems to be a combination of fears about patents, laws
against reverse engineering, lack of demand (which I find hard to believe),
and unexpected technical complexity. Hopefully I have simply missed the
existence of such a project, but if not, I hope that the current discussions

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20171109-mit-cheri-web.pdf
https://lwn.net/Articles/743726/
https://lwn.net/Articles/743752/


about open-source hardware might inspire some people with the necessary
expertise, both technical and legal, to investigate the subject.

Is it time for open processors?
Posted Jan 10, 2018 0:06 UTC (Wed) by pabs (subscriber, #43278)
[Link]

Speaking of which, the GNU origin story involves printer software.
Does anyone know if it was printer drivers or software running on the
printer itself?

Is it time for open processors?
Posted Jan 10, 2018 1:15 UTC (Wed) by pizza (subscriber, #46) [Link]

I don't see it happening, for a simple reason -- the "open source"
printers will be competing with commercial printers that are already
sold at or below cost thanks to cutthroat competition, to say nothing of
the secondhand market for the better-made stuff. 

(And I say this as someone who writes FOSS printer drivers...)

Is it time for open processors?
Posted Jan 10, 2018 2:23 UTC (Wed) by karkhaz (subscriber,
#99844) [Link]

Printers are sold below cost because the ink is sold at extortionate
prices. Anybody with any sense would invest in a printer that was
priced the other way round, i.e. a more expensive printer that uses
non-locked-in and presumably cheaper consumables.

Is it time for open processors?
Posted Jan 10, 2018 2:33 UTC (Wed)
by rahulsundaram (subscriber, #21946) [Link]

>Anybody with any sense would invest in a printer that was priced
the other way round, i.e. a more expensive printer that uses non-
locked-in and presumably cheaper consumables. 

https://lwn.net/Articles/743772/
https://lwn.net/Articles/743778/
https://lwn.net/Articles/743786/
https://lwn.net/Articles/743787/


That really depends on how often you print. Cheap printer and
expensive ink is perfectly fine if you print occasionally and like
the convenience of a printer of home but don't print often enough
for the running cost of ink to be a problem.

Is it time for open processors?
Posted Jan 10, 2018 7:52 UTC (Wed) by michaeljt (subscriber,
#39183) [Link]

> Cheap printer and expensive ink is perfectly fine if you print
occasionally and like the convenience of a printer of home but
don't print often enough for the running cost of ink to be a
problem. 

I believe that inkjet printer nozzles can (could?) be destroyed by
dried out ink if they are used too infrequently. Might be wrong
though.

Is it time for open processors?
Posted Jan 10, 2018 16:48 UTC (Wed)
by nybble41 (subscriber, #55106) [Link]

> I believe that inkjet printer nozzles can (could?) be
destroyed by dried out ink if they are used too infrequently. 

That has been my experience. I only have occasional need for
hardcopies (a few times a year—tax forms and the like, and
one-off projects), and eventually switched to an HP Color
LaserJet CM1312nfi at home after observing that I was
replacing ink cartridges roughly every other print job due to
the ink drying out. The laser was more expensive up front—
and replacement toner isn't cheap either—but since toner
doesn't expire nearly as quickly as ink I can actually use the
entire cartridge, drastically reducing my cost-per-page. I've
had my laser printer for nearly a decade now and only had to
replace the black toner once. As a bonus, the quality is higher
for text and diagrams, and it even manages passable photos.

https://lwn.net/Articles/743799/
https://lwn.net/Articles/743910/


Is it time for open processors?
Posted Jan 11, 2018 2:55 UTC (Thu)
by JanC_ (subscriber, #34940) [Link]

I switched to a monochrome laser for the same reason, as
pretty much everything I printed didn't really _need_ any
colours (and those aren't really all that more expensive than
inkjets nowadays).

Is it time for open processors?
Posted Jan 17, 2018 15:28 UTC (Wed)
by mstone_ (subscriber, #66309) [Link]

Yup, I had my old laserjet 4L for something close to 20
years with only a few toner cartridge replacements. Finally
broke down and replaced with a color laser when it got too
hard to find a replacement cartridge & parts. Tried an inkjet
for a while, basically needed a new ink cartridge every
time I printed, and that gets really expensive really fast.
The inkjet had beautiful quality for pictures, and the ability
to do full bleed output (hard on a laser), but I don't
generally need display-quality pictures "right now", so
outsourcing that rare need is a no-brainer.

Is it time for open processors?
Posted Jan 10, 2018 16:08 UTC (Wed) by khim (subscriber,
#9252) [Link]

You assume people are rational. They are not. And, worse,
producers tend to be rational while final consumers are not
(because irrational makers go bankrupt while irrational consumers
don't). 

Thus we have what we have.

Is it time for open processors?

https://lwn.net/Articles/744005/
https://lwn.net/Articles/744570/
https://lwn.net/Articles/743905/


Posted Jan 18, 2018 16:39 UTC (Thu)
by massimiliano (subscriber, #3048) [Link]

You assume people are rational. They are not. And, worse,
producers tend to be rational while final consumers are not
(because irrational makers go bankrupt while irrational
consumers don't).

Thus we have what we have.

Now, this should go into the "quotes" section!

Programmable hardware
Posted Jan 10, 2018 3:57 UTC (Wed) by songmaster (subscriber, #1748)
[Link]

Given the availability of really big high-speed FPGA chips today it
surprises me that we don’t hear about them being used as the basis for an
open CPU design (and I’m not talking about those chips that already have
an ARM or similar core built into them, that isn’t the point of this idea). I
understand that they aren’t going to be as fast as a custom-developed chip,
but raw chip speeds have been going up much more slowly in recent years
and the ability to reprogram the hardware ought to make for some
interesting ideas. 

I could see multiple CPUs on different chips and each programmed or
optimized for a different workload or part of the problem — that one is
currently running Python bytecode, there’s a JVM over here with a couple
of cores, and the security processor over there is doing TLS and SSH. Of
course the result is going to need an OS that is decidedly not SMP or even
big.LITTLE. Any takers?

Programmable hardware
Posted Jan 10, 2018 16:53 UTC (Wed) by somlo (subscriber, #92421)
[Link]

IIRC there's a partial port of Fedora to RISC-V, and there's even a way
to run it on an FPGA board using a Xilinx Artix7

https://lwn.net/Articles/744727/
https://lwn.net/Articles/743792/
https://lwn.net/Articles/743922/


chip: https://fedoraproject.org/wiki/Architectures/RISC-V 

What's missing right now is a way to build the FPGA bitstream from
Verilog (or Chisel) sources using completely open tool chains, although
there's some work in progress to address that
(see https://symbiflow.github.io/ mentioned in an earlier comment).

Programmable hardware
Posted Jan 10, 2018 22:55 UTC (Wed) by brouhaha (subscriber,
#1698) [Link]

Soft-core processors in an FPGA are about two orders of magnitude
slower than the fastest single-core x86 performance. Soft-core
processors are great for some things, but replacing general-purpose
processors is for the most part not one of them. 

Soft-core processors are mostly useful if you're going to have an FPGA
anyhow, for some other reason, and can throw in a low-ish performance
processor little or no extra hardware cost.

As a hobby I've developed some 8-bit soft core processors, including
one compatible with the RCA CDP1802, which was the first 8-bit
CMOS single-chip microprocessor, circa 1976 (famous for use in the
COSMAC ELF microcomputer). On recent FPGAs, my 1802 core runs
at least 70 times the maximum instruction execution rate of the original,
but that's with 40 years of hardware advancement.

Is it time for open processors?
Posted Jan 10, 2018 7:13 UTC (Wed) by sampablokuper (subscriber,
#53150) [Link]

No mention of LowRISC?

Must watch by bunnie on open hardware
Posted Jan 10, 2018 13:25 UTC (Wed) by guerby (subscriber, #108731)
[Link]

https://fedoraproject.org/wiki/Architectures/RISC-V
https://symbiflow.github.io/
https://lwn.net/Articles/743982/
https://lwn.net/Articles/743796/
https://en.wikipedia.org/wiki/LowRISC
https://lwn.net/Articles/743822/


IMHO a very good tour of remaining issues around open hardware
processors by bunnie : 

Keynote Address: Impedance Matching Expectations Between RISC-V
and the Open Hardware Community 
blog : https://blog.hackster.io/death-of-moores-law-makes-open-h... 
video : https://www.youtube.com/watch?v=zXwy65d_tu8 
slides : https://riscv.org/wp-content/uploads/2017/05/Wed1100-impe... 
author blog : https://www.bunniestudios.com/

Is it time for open processors?
Posted Jan 15, 2018 20:38 UTC (Mon) by metasequoia (subscriber,
#119065) [Link]

Since a processor would be an international non-profit effort, a standing
problem comes up - no mechanisms exist which can protect the rights of
people, or FOSS and its 'gift to everybody' in what now amounts to an
intentionally amoral supranational legislative space where corporate rights
have been elevated above those of nations, and people and their rights and
interests are intentionally absent, in order to enforce a lock down that
allows only one possible future for the planet, one where everything is
owned and nothing shared, a corporate centric world view so instnctively
wrong to most people that its been hidden from sight while what amounts
to a global oligarchy works feverishly to lock it into place irreversibly in
as many ways as possible. 

To carve demonstrably bad, undemocratic policy in stone forever,
basically. This seems to me like a kind of madness.

There may also be current secret law, involving hardware, which if it is
the case, I suspect would be because these agreements likely - in order to
give all nation states equal rights - when dealing with multinational
corporations, the agreements likely require some back door mechanisms
they can all be given equally. 

This is I suspect the case.. In these deals, there is no standing for any
representatives of the whole worlds people as people are only instantiated
through the country they are the market of.

https://blog.hackster.io/death-of-moores-law-makes-open-hardware-possible-7aaad86e47bf
https://www.youtube.com/watch?v=zXwy65d_tu8
https://riscv.org/wp-content/uploads/2017/05/Wed1100-impedancematch-huang.pdf
https://www.bunniestudios.com/
https://lwn.net/Articles/744419/


See the problem? 

We, the people, no longer have representation in this sphere. Its become
"We the corporations". This is not in the abstract, its been done physically.
Sure, we have governments, but their primary responsibility increasingly,
because people were never made aware of the fact that this was being
done, are to act on behalf of their corporations. In particular the newer
agreements being promoted clearly are a sort of second enclosure
transferring everything of value to corporations. For example, creation of
any new public services of all kinds seem to be prohibited "except
services supplied in the exercise of governmental authority": "a service
supplied in the exercise of governmental authority' means any service
which is supplied neither on a commercial basis, nor in competition with
one or more service suppliers." So almost no public services end up
qualifying for protection.

There is an urgent need for new structures to represent people in this
sphere. 


